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Why AD?

Some algorithms need gradients and perhaps

Hessians. Possibilities...

• Finite-differences

+ work with black boxes

− but can be expensive

− and introduce truncation error.
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Why AD? (cont’d)

• Analytic derivatives

+ no truncation error

+ available from symbolic-computation

packages

− tedious and error-prone if done by hand

− can be inefficient

− possible interfacing issues

4



Why AD? (cont’d)

• Automatic Differentiation (AD)

+ no truncation error (uses chain rule)

+ reverse mode = efficient for gradients

+ sometimes easy to use

− can take lots of memory

− possible interfacing issues

− if-then-else: which side at break?
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Forward and Backward

Two modes:

• Forward: recur partials (w.r.t. independent

variables) of operands at each operation

+ good locality and memory use

+ for n = 1 can compute high-order deriv’s

(Taylor series)

− slow for large n (# indep. vars)
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Forward and Backward (cont’d)

• Backward: recur partials of final result

w.r.t. intermediate results

+ f and ∇f in time proportional to

computing f

− memory use proportional to number of

operations
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Forward and Backward (cont’d)

• Backward: recur partials of final result

w.r.t. intermediate results

+ f and ∇f in time proportional to

computing f

− memory use proportional to number of

operations
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Implementation Approaches

Implementations must augment function

computations with recurrence of partial

derivatives. Logically equivalent to obtaining

and manipulating an expression graph.

• Preprocessor consumes source code (e.g., C

or Fortran) and emits modified source.

◦ Examples: AUGMENT, ADIFOR,

ADIC

9



Implementation Approaches (cont’d)

• Operator overloading in some programming

languages, such as C++ or Fortran

◦ Examples: ADOL-C, ADOL-F, Sacado

• Modeling language (manipulates expression

graph behind the scenes)

◦ Examples: AMPL, GAMS

Many tools exist; http://www.autodiff.org

lists 29.
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Implementation: Reverse-mode Inner Loops

Reverse-mode derivative propagation: all

multiplications and additions. Op’ns of form

a← a + b× c

AMPL/solver interface lib.:

do *d->a.rp += *d->b.rp * *d->c.rp;

while(d = d->next);

Sacado:

do d->c->aval += *d->a * d->b->aval;

while((d = d->next));
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Sacado

Trilinos = collection of open-source tools for

scientific computing in C++; see

http://trilinos.sandia.gov

Sacado = Trilinos AD package (templated)

• Forward AD = rewrite of FAD package of

Di Césaré and Pironneau; uses expression

templates.

• Reverse AD = RAD (written by dmg).

• Taylor poly’s (n = 1 fwd) by Eric Phipps.
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Sacado results in Charon
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nlc for Optimized Gradients

Seeing larger expression graphs gives more

opportunity for optimizing the computation.

• ADIC optimizes per C statement, mixing

forward and reverse, in overall forward

evaluation.

• nlc program sees entire function evaluation

in .nl file, emits C or Fortran avoiding

needless ops.
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Timings on Protein-Folding Example

Eval style sec/eval rel.

Compiled C, no grad. 2.92e–5 1.0

Sacado RAD 1.90e–4 6.5

nlc 4.78e–5 1.6

ASL, fg mode 9.94e–5 3.4

ASL, pfgh mode 1.26e–4 4.3

Eval. times, protein folding (n = 66)
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Hessian-vector Products

Several approaches...

• RAD ◦ FAD: ADvar<SFad<double,1> >

• FAD ◦ RAD: SFad<ADvar<double>,1>

• Custom mixture: Rad2::ADvar<double>

• AMPL/solver interface library: find,

exploit partial separability automatically:

f(x) =
∑

i θi

(

∑

j fij(Uijx)
)

.
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Hessian-vector timings

Eval style sec/eval rel.

RAD ◦ FAD 4.70e–4 18.6

FAD ◦ RAD 1.07e–3 42.3

RAD2 (Custom mixture) 2.27e–4 9.0

ASL, pfgh mode 2.53e–5 1.0

Seconds per Hessian-vector prod

f = 1

2
xTQx, n = 100.
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Concluding Remarks

• ∃ many possibilities, each with advantages

and disadvantages. Having several tools

helps, especially for treating hot spots.

• C++ — like looking through a keyhole;

Seeing more expression graph can help.

• AD can save human time.

• AD may give faster, more accurate

computation.

• Room for more tools to optimize evals.
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Some Pointers

http://www.autodiff.org

http://trilinos.sandia.gov

http://www.sandia.gov/∼dmgay
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